December 11, 2018

9th S.M.A.R.T. Lecture held by Professor Wolfgang Lutz

Population trends and the global sustainable development goals

The 9th S.M.A.R.T. Lecture held by Professor Wolfgang Lutz, Founding Director of the Wittgenstein Centre for Demography and Global Human Capital (IIASA, VID/ÖAW, WU), was a plea for education. Particularly female education not only connects to a decrease of child mortality and to an increase of life expectancy, it proves to be key to the alleviation of poverty.

In his talk, Wolfgang Lutz proclaimed that essentially people are not very different all over the world. However, we face a universal development of “demographic modernization” with countries currently at different stages of the same process: In the first stage falling death rates due to better sanitation and medical advance together with a culturally determined high birth rate result in a high population growth. In a later stage of development birth rates also fall, leading to low or even negative population growth. By the examples of the demographic transition of Finland from 1722-2017, birth and death rates at Mauritius from 1875 on, and a study on the effect of income or education on the infant mortality in India Wolfgang Lutz impressively showed the effect of education on a higher life expectancy: When it comes to survival, mind matters more than money!

Empirical studies show that the most transformative social changes are associated with the spread of universal female literacy, and the future of world population growth and adaptive capacity to environmental change will crucially depend on female education. The “homo sapiens literata” (MPI-EVA, McElreath) - a sub-species of homo sapiens characterized by high abstraction, literacy, codified knowledge, complex socio-economic institutions and modern science - makes the change. A lively discussion followed the talk, which will continue at CeMM: How can we contribute to a positive societal development? Education matters!

We thank Professor Lutz for his inspiring talk within the S.M.A.R.T. lecture series at CeMM!

December 07, 2018

CeMM position on genome editing in the light of recent reports about gene-edited babies

Following internal discussions at CeMM on human genome editing – prompted by recent reports on the birth of gene-edited babies using CRISPR technology in China – we distance ourselves from human trials performed without adequate ethical approval by the responsible institutions and in violation of both local regulations and the international consensus in the scientific community.

CeMM welcomes responsible research on understanding and advancing genome editing technology including CRISPR, which greatly benefits basic biomedical research and has great potential also for the treatment of many genetic diseases. Importantly, any such research must be performed in strict concordance with local, national, and international laws and regulations. Furthermore, it should be discussed and supported by the international scientific community, including biologists and medical researchers as well as ethicists, social scientists and various stakeholders of civil society, such as patients’ organizations.

There is broad consensus within the scientific community that editing of the human germline for human enhancement is entirely unacceptable. In contrast, genome editing to correct severe genetic diseases may be acceptable if there is a clear positive risk-benefit ratio, no suitable alternatives, comprehensive preparatory work supporting feasibility, full legal and regulatory compliance, and strong framework of ethical guidance and supervision.

CeMM is committed to participate in a broad societal dialog about CRISPR technology, genome editing, and other developments in the life sciences. It is important that these developments are not happening in perceived or actual secrecy at highly specialized research institutions, but that they are part of a broad discussion about chances and risks, and based on information, education and divulgation on all scientific, medical, ethical and societal aspects associated. CeMM is committed in fostering this debate and promoting genetic literacy in the general population.

To read more about the potential applications of CRISPR technology, and the use of it at CeMM, please download the full statement

November 29, 2018

Kaan Boztug receives ERC Consolidator Grant

Related Files

Share

Kaan Boztug, Director of the Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), is awarded a prestigious Consolidator Grant of the European Research Council (ERC) for research on human immune dysregulation.

Kaan Boztug, Director of the Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Adjunct PI at CeMM and Professor of Pediatrics at the Medical University of Vienna and St. Anna Children’s Hospital, receives the renowned funding by the ERC with a project duration of five years to decode disorders of the human immune regulation. After being granted a FWF START prize and an ERC Starting Grant in 2012, Kaan Boztug’s research is now funded for the second time by the ERC. This shows recognition of the excellent work of Prof. Boztug’s research group, who is regarded as an international expert in the field of rare diseases of the immune system and hematopoiesis.

Why does the human body attack itself sometimes? What causes problems in the regulation of the immune system? And why are these disorders often leading to cancer? How can these insights be used to develop targeted therapies in the future? Kaan Boztug and his team try to answer these questions. The goal is to identify novel genetic factors for autoimmune disorders – diseases where the body is not able to distinguish between the body’s own cells and cells of invading pathogens. Kaan Boztug hypothesizes that the number of pathways involved is finite: “My goal is to create a map showing as many genes and pathways as possible that play a role in disorders of the balance of the immune system. This marks the foundation of further research activities and will lead to starting points for novel therapies.”

ERC Consolidator Grant
Project funding by the European Research Council (ERC) ranks among the most prestigious fundings within Europe. The Consolidator Grants are awarded up to two million euros and are intended to support excellent researchers by securing their independence and developing a successful career path. Kaan Boztug’s Consolidator Grant is already the 10th funding by the ERC for (Adjunct) PIs at CeMM.

The Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD) was launched by the Ludwig Boltzmann Gesellschaft in April 2016 together with its partner institutions including the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, the Medical University of Vienna and the Children’s Cancer Research Institute and the St Anna Children’s Hospital Vienna. Its research remit is the thorough analysis of rare diseases of the hematopoietic system, the immune system and the nervous system – as such not only dedicated to provide research for the development of personalized therapeutics for affected patients, but with similar efforts dedicated to unravel novel insights into human biology. Benefitting from full access to the infrastructure of its partner institutions, LBI-RUD has established a coordinated research programme, integrating and considering scientific, sociologic, ethical and economical aspects of rare diseases. www.rare-diseases.at

We congratulate Kaan Boztug and his team!

November 23, 2018

International PhD Program in Molecular Technologies and Systems Medicine CALL OPEN

Related Links

Related Files

Share

Do you want to work in an environment that promotes free-minded scientific creativity, and translate your findings to impact medical practice and improve healthcare?
Are you excited to gain a new understanding of the molecular physiology and pathology of humans?
Do you want to join an international group of highly collaborative and successful colleagues that help you achieve your training and research goals?
Are you a person who enjoys teamwork across disciplines and within a broader cultural and social context?

The next PhD Program of CeMM, the Research Center for Molecular Medicine of the Austrian Academy of Sciences in Vienna will start in October 2019. We are offering 15 fully funded PhD positions at CeMM and LBI-RUD and are looking for exceptionally motivated candidates!

Medics, Biologists, Chemists, Bioinformaticians, Computer Scientists, Engineers, Physicists, Mathematicians, and candidates with a degree in a similar subject please apply now.

CeMM and LBI-RUD, the Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases are partner institutes and have identical principles of excellence, competitiveness, internationality as well as mentoring and training, and both operate in a unique mode of super-cooperation, connecting biology with medicine, experiments with computation, discovery with translation, and science with society and the arts. The institutes are located in the very same research building at the center of one of the largest medical campuses in Europe.

The 2019 CeMM PhD Program will focus on the thematic areas of Infection, Immunity, Metabolism, Cancer, Rare Diseases, Network Medicine, and Design Chemistry. These areas are built on the pillars of epigenetics and genome integrity, bioinformatics and systems biology, high-throughput genetics, genomics and proteomics, molecular and cell biology, chemical biology, organic and inorganic chemical synthesis.

For more information please visit: www.cemm.at/phd-program
Application Deadline: 7th January 2019

November 15, 2018

New mechanism controlling the master cancer regulator uncovered

Who regulates the key regulator? The Superti-Furga laboratory at CeMM reports online in the journal Science about a newly discovered mechanism by which RAS proteins, central to cancer signaling, are regulated in their activity and localization.

Of the more than 23,000 genes in the human genome, only a handful assume a very central role in signal transduction and growth regulation. Of these, the three genes encoding RAS proteins are particularly important, as they are found mutated in over 25% of human cancers. The processes around the RAS gene products are also involved in a variety of rare human developmental disorders called the RASopathies. RAS proteins are absolutely central regulators of growth and oncogenesis and, in turn, every regulator of RAS is poised to be fundamentally important for cancer and a broad variety of human diseases.

Driven by the interest in identifying underlying genetic determinants of drug response in a specific type of cancer of the hematopoietic system, CeMM now reports on the mechanistic link between the LZTR1 gene, previously associated with a variety of rare disorders and rare cancers, and RAS. These findings provide a new key regulator of a pathway that is one of the best studied signaling pathways in biology. As such, it represents a major advancement. The study not only sheds new light and details on the regulation of a central growth-promoting protein, but also offers a molecular explanation for an unusually large number of pathological conditions, ranging from different types of brain and pediatric cancers to developmental pathologies like Noonan syndrome.

The research team found that the protein called LZTR1, in concert with its copartner cullin 3, regulates RAS by attaching to it a small molecular tag, called ubiquitin. The modified RAS proteins demonstrate altered localization within the cell and reduced abundance. Mutational defects or inactivation of LZTR1 lead to an increase of RAS dependent pathways causing dysregulation of growth and differentiation. LZTR1 can therefore be considered a breaker of RAS action.

Publication:
Johannes W. Bigenzahn, Giovanna M. Collu, Felix Kartnig, Melanie Pieraks, Gregory I. Vladimer, Leonhard X. Heinz, Vitaly Sedlyarov, Fiorella Schischlik, Astrid Fauster, Manuele Rebsamen, Katja Parapatics, Vincent A. Blomen, André C. Müller, Georg E. Winter, Robert Kralovics, Thijn R. Brummelkamp, Marek Mlodzik, Giulio Superti-Furga. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018 November 15. doi:10.1126/science.aap8210.

Funding:
The study was supported by the following funding agencies and grants: Austrian Academy of Sciences, European Research Council (ERC) grants (i-FIVE 250179 and Game of Gates 695214) and starting grant (ERC-2012-StG 309634), Austrian Science Fund grant (FWF SFB F4711 and F4702), EMBO (ALTF 1346-2011, 1543-2012), NIH grants R01 EY013256 and GM102811, Cancer Genomics Center (CGC.nl), KWF grant NKI 2015-7609.

November 06, 2018

Welcome to new CeMM and LBI-RUD Adjunct PIs

Related Links

Share

We are happy to announce that during Summer/Autumn we had a successful search for new CeMM and LBI-RUD Adjunct Principal Investigators.

A warm WELCOME to:

Miriam Unterlass (CeMM) - Materials Chemistry, Technical University of Vienna
Nuno Maulide (CeMM) – Organic Chemistry, University of Vienna
Andreas Villunger (CeMM/LBI-RUD) – Division of Developmental Immunology, Medical University of Innsbruck
Thomas Reiberger (LBI-RUD/CeMM) – Division of Gastroenterology and Hepatology, Medical University of Vienna
Georg Stary (LBI-RUD/CeMM) – Department of Dermatology, Medical University of Vienna

We were looking for MD and/or PhD scientists either at their first independent appointment or already at the consolidation/advanced stage to apply their expertise close to a clinical setting. Particularly with those departments and in those areas we did not yet entertain extensive collaborations or have already extensive expertise. We offer a collaboration/affiliation contract for initially 5 years with the institution(s) mentioned in brackets, including a PhD student position, consumables and facility service funds. Adjunct PIs will be active members of our Faculty and be fully committed to participate in our Friday Seminars and the PhD Program.

CeMM and LBI-RUD are grateful for all applications and the strong interest in working with us. It was a very difficult task for the hiring committee to compare the great diversity of applications, research areas, and candidates in the different stages of their career. We are already working on ideas to further broaden its network and to offer additional ways of collaboration. 

October 12, 2018

Basophils - underestimated players in lung development

Related Links

Related Files

Share

The adult lung consists of different, highly specialized cell types that are protected by a variety of immune cells. Using advanced single cell sequencing methods, researchers of the Weizmann Institute of Science in Israel, the CeMM and the Medical University in Vienna discovered a hitherto unknown, fundamental role of basophils in the development of macrophages in the lung. The study, published in Cell, could open new clinical strategies to fight lung diseases.

Lungs are vital organs required for the uptake of oxygen in exchange for carbon dioxide. However, the enormous complexity of the respiratory organ is often underestimated and deserves a closer look: A broad range of specialized cells work closely together to ensure the proper functioning of the lung and provide the vital gas exchange. The development and maturation of this complex organ during the embryonal stages and after birth was largely unknown. 

In the latest issue of Cell (DOI: 10.1016/j.cell.2018.09.009), scientists from Israel and Austria made an important contribution to the understanding of the pulmonary immune-development using a combination of high throughput single-cell RNA sequencing, functional assays and cutting-edge microscopy methods. The research group of Ido Amit from the Weizmann Institute of Science, together with the teams of Sylvia Knapp at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences and the Department of Medicine I of the Medical University Vienna and Tibor Harkany at the Center for Brain Research of the Medical University of Vienna could establish the first comprehensive map of lung cell types and their inter-lineage crosstalk during development. 

An unexpected finding: basophils, immune cells that were hitherto held responsible for allergic reactions, reside in lungs where they develop into a special subtype that produces crucial growth factors and cytokines. These cells are different from previously described basophils that circulate in the blood, and their role in development and homeostasis, specifically in the lungs, was never reported before. Basophils broadly interact with other cell types of the lung, especially macrophages. Molecular signals, emitted by basophils, assist in the maturation of macrophages into their lung-specific phenotype, the so called alveolar macrophage. These unique signals and their impact on macrophages suggest they may play a role in lung diseases and might therefore expose and potential target for novel immunotherapies.

Publication:

Merav Cohen, Amir Giladi, Anna-Dorothea Gorki, Dikla Gelbard Solodkin, Mor Zada, Anastasiya Hladik, Andras Miklosi, Tomer-Meir Salame, Keren Bahar Halpern, Eyal David, Shalev Itzkovitz, Tibor Harkany, Sylvia Knapp, Ido Amit. Lung single cell signaling interaction map reveals basophil role in macrophage imprinting. Cell October 11, 2018. DOI: 10.1016/j.cell.2018.09.009

Funding:

The study was funded by the Chan Zuckerberg Initiative (CZI), a HHMI International Scholar award, the European Research Council (ERC), a MRA Established Investigator Award, the Israel Science Foundation, a Helen and Martin Kimmel award for innovative investigation, the Israeli government, Ministry of Science and Technology, the Austrian Science Fund (FWF) and the European Molecular Biology Organisation (EMBO).

October 08, 2018

New Artwork by Klaus Pamminger at CeMM

We are happy and proud to announce a new piece of art located in the small seminar room at CeMM:

Stiegenhaus, 11 Square Albin Cachot, 75013 Paris-13E / RC01-BDJ 2018
Balsa wood, lacquer, multi-part
approx. 270 x 520 x 32 cm

The artwork is a generous gift from our befriended artist Klaus Pamminger who has already contributed a piece of art to the CeMM Brain Lounge. Until Summer 2018 the wall sculpture was part of the exhibition COLLAGE at the Fotogalerie Wien. The sculpture “Stiegenhaus” shows construction lines that Klaus Pamminger took from the film Belle de Jour (1967) derived from the staircase that Séverine Sérizy (Catherine Deneuve) climbs in order to leave her old bourgeois life behind. The concrete haptic perception and play of colors of the wall sculpture correlates with the audible click-clack of the heels of Séverine’s shoes. The complementary video VENEZ!/Come in! is available at vimeo.com/288200649.

Klaus Pamminger is a recognized Austrian artist with numerous international exhibitions as well as presentations at Film Festivals and Art Fairs. He is known for media set pieces that inscribe themselves into architecture, image fragments from cinema films that the artist collages in photographs of his living space. The artwork was inauguration with a small celebration with the artist and invited guests at CeMM on October 4, 2018.

Creativity and free-mindedness are among the key factors critical to innovative science at CeMM. Our laboratories and offices are designed to be full of light with a lot of open space for interactions, and our partnership and dialogue with artists helped to enhance the building with yet more areas of inspiration and to foster out-of-the-box thinking. The Art Façade of the CeMM building, the Brain Lounge and the Time Capsule are already highly appreciated and integral parts of CeMM’s daily life and research activities. The new wall sculpture by Klaus Pamminger in our seminar room is an additional proof of the strong and valuable relationship between art and science at CeMM. Thank you!

Art&Science at CeMM https://cemm.at/artssociety/

To start the academic year with a community experience CeMM had its yearly Outing on Friday, October 5, 2018. This year´s thematic focus was on traffic and public transport, and built on our previous SMART lecture held by architect and urban design consultant Jan Gehl on “Livable cities for the 21st century”.

We were very glad for the opportunity to visit the light rail manufacturing plant of Siemens Mobility GmbH in the 11th district of Vienna which is usually not open to visitors. After a short presentation and introduction we had guided tours through the production halls learning more about the impressive logistics of a successful global company and the building process of railway vehicles for safe, cost-effective and environment-friendly passenger and freight transport.

We had a very nice lunch at the “Kantine in der Brotfabrik Wien", where experienced professionals run a social business and created jobs for people with less job opportunities.

And the afternoon was dedicated to a voluntary photo and group challenge. Again, with the overall topic traffic and public transportation. A lot of creative, artistic, profound, interesting and funny photos have been taken by our CeMM members in six different categories while walking and exploring the city. The winning pictures will be released through our social media channels soon. For those who participated in the afternoon program, the day ended with Vienna sausages and drinks at Bitzinger Wurst Stand at Albertinaplatz.

We thank all companies and our PR and Event Manager Eva Schweng and the Admin Team for making the outing an enjoyable and interesting event.

August 27, 2018

Epigenetic analysis of aggressive brain tumors

An aggressive brain tumor (glioblastoma), illustrated based on magnetic resonance data (© Karl-Heinz Nenning)

Glioblastoma is a brain cancer with devastating prognosis. A new collaborative study by scientists from CeMM, MedUni Vienna and the Austrian Brain Tumor Registry network demonstrates how epigenetic analysis of tumor samples collected in routine clinical practice could be used to better classify and treat the disease. The results were published in Nature Medicine.

Glioblastoma is an aggressive brain cancer with a high degree of molecular heterogeneity among the cancer cells. This results in evolutionary selection for those cells that can withstand drug treatment. In order to develop better therapies for glioblastoma, detailed knowledge about the molecular heterogeneity of the tumor cells will be crucial, given that this heterogeneity provides the substrate from which drug resistance evolves. 

Whether and how epigenetic regulation changes when a glioblastoma becomes therapy-resistant has been a largely unsolved question. To investigate the role of epigenetics in glioblastoma disease progression, the research group of CeMM PI Christoph Bock analyzed DNA methylation in more than 200 glioblastoma patients, focusing on the epigenetic changes that occur during glioblastoma disease progression. In close collaboration with scientists at the Medical University of Vienna and clinicians at eight hospitals throughout Austria, a study published in Nature Medicine (DOI: 10.1038/s41591-018-0156-x) identified epigenetic changes that accompany glioblastoma progression and predict patient survival.

This research builds on the Austrian Brain Tumor Registry, spearheaded by Adelheid Woehrer from the Institute of Neurology at the Medical University of Vienna, who is a senior and corresponding author of the study. Combining epigenetic data with brain imaging and digital pathology, the study established important links between glioblastoma at the level of molecules, cells and organs. These associations can be exploited for improving disease classification. Moreover, this study provides a rich resource for understanding the role of epigenetics in glioblastoma and a new toolset with broad relevance for personalized medicine. 

Publication:

Klughammer J*, Kiesel B*, Roetzer T, Fortelny N, Kuchler A, Nenning KH, Furtner J, Sheffield NC, Datlinger P, Peter N, Nowosielski M, Augustin M, Mischkulnig M, Ströbel T, Alpar D, Erguener B, Senekowitsch M, Moser P, Freyschlag CF, Kerschbaumer J, Thomé C, Grams AE, Stockhammer G, Kitzwoegerer M, Oberndorfer S, Marhold F, Weis S, Trenkler J, Buchroithner J, Pichler J, Haybaeck J, Krassnig S, Mahdy Ali K, von Campe G, Payer F, Sherif C, Preiser J, Hauser T, Winkler PA, Kleindienst W, Würtz F, Brandner-Kokalj T, Stultschnig M, Schweiger S, Dieckmann K, Preusser M, Langs G, Baumann B, Knosp E, Widhalm G, Marosi C, Hainfellner JA, Woehrer A#, Bock C# (*These authors contributed equally to this work; #These authors jointly directed this work). The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space. Nature Medicine, August 27, 2018. DOI: 10.1038/s41591-018-0156-x 

Funding:

The study was funded by the Austrian Science Fund, the European Union, the Austrian Academy of Sciences, and the European Research Council.