Skip to main content Skip to page footer

Pharmacoscopy improves therapy for relapsed blood cancer in a first clinical trial


Researchers at CeMM and the Medical University of Vienna presented a preliminary report published in The Lancet Hematology on the clinical impact of an integrated ex vivo approach termed pharmacoscopy. The interims analysis of the first-ever clinical trial with the approach shows that pharmacoscopy can assist decision-making of the responsible clinicians effectively and thus represent a powerful tool for practical precise and personalized medicine.

Patients suffering from refractory and relapsed blood cancers often have few treatment options and short survival times. At this stage, identifying effective therapies can be challenging for doctors. Even state-of-the-art genetic analyses, due to the high heterogeneity of cancer cells and the impact of the various mutations on their drug response, do often not suffice to instruct personalized treatments. Pharmacoscopy, a technology developed by scientists at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences and tested for its clinical efficacy by clinicians of the Medical University of Vienna, offers a functional approach: hundreds of drug options can be quickly pre-tested ex vivo in small liquid biopsy samples collected from individual patients.

The effects of each drug on the individual cells are quantified using high-throughput and high-content automated confocal microscopy. In combination with specially developed analysis methods and machine learning and other unique algorithms, pharmacoscopy allows quantification of never-before visualized phenotypes. The method was first presented last April in Nature Chemical Biology (doi:10.1038/nchembio.2360).

While the clinical study is still recruiting, interim analysis of the program showed that 88.2% of the patients recruited (15 out of 17) who received pharmacoscopy-monitored personalized therapies achieved partial or complete remission, while only 23.5% (4 out of 17) responded similarly well to their previous respective treatments.

In addition, the median progression-free survival of patients who were treated in accordance to pharmacoscopy-guided therapy increased from 5.7 week to 22.6 weeks compared to their last line of treatment. Further, in a retrospective study organized to specifically determine the ability of the method to stratify responding and non-responding newly-diagnosed patients with acute myeloid leukemia (AML), resulted in 90% accuracy. Before, such accuracy in prediction of treatment outcome was unachievable, with or without genetic assays.


Berend Snijder*, Gregory I Vladimer*, Nikolaus Krall, Katsuhiro Miura, Ann-Sofie Schmolke, Christoph Kornauth, Monika Sabler, Oscar Lopez de la Fuente, Hye-Soo Choi; Emiel van der Kouwe; Sinan Gültekin, Lukas Kazianka, Johannes Bigenzahn, Gregor Hörmann, Nicole Prutsch, Olaf Merkel, PhD; Anna Ringler; Georg Jeryczynski, Marius Mayerhöfer, Ingrid Simonitsch-Klupp, Katharina Ocko, Franz Felberbauer, Leonhard Müllauer, Gerald W Prager, Belgin Korkmaz, Lukas Kenner, Wolfgang R Sperr, Robert Kralovics, Heinz Gisslinger, Peter Valent, Stefan Kubicek, Ulrich Jäger, Philipp B Staber, and Giulio Superti-Furga. (*co-first authors) Image-based ex-vivo drug screening for patients with aggressive haematological malignancies: interim results from a single-arm, open-label, pilot study. The Lancet Haematology, November 13, 2017. DOI: 10.1016/S2352-3026(17)30208-9


The study was supported by the European Research Council (ERC), the Austrian Science Fund (FWF), Austrian National Bank, the Austrian Federal Ministry of Science, Research and Economy, the National Foundation for Research, Technology and Development, the MPN Research Foundation, the Swiss National Science Foundation and the European Molecular Biology Organization (EMBO)